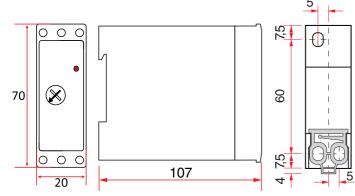

RELÉ DE TEMPO E ESTRELA TRIÂNGULO

Os relés de tempo possuem uma ampla gama de aplicações onde será necessário controlar os tempos de acionamento ou desacionamento de cargas tais como: empacotadoras, bombas, motores elétricos, sistemas de ar-condicionado, linhas de produção e automação em geral.

OPERAÇÃO: Ajuste o relé de acordo com o tempo requerido após a energização a regulagem permanece armazenada, operando automaticamente o equipamento conforme a regulagem pré estabelecida.

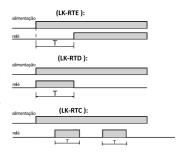
INFORMAÇÕES GERAIS

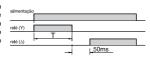
Alimentação LK-RT		12Vac/Vdc, 24Vac/Vdc, 110Vac, 220Vac, 380Vac, 440Vac	
Alimentação LK-RY		24Vac/Vdc, 220Vac	
Frequência (Hz)		60Hz	
Faixa de ajuste LK-RT (Seg. ou min.)		0-5 / 0-15 / 0-30 /0-60	
Faixa de ajuste LK-RY (Segundos)		0-30	
Conexão		Bornes e parafusos	
Peso aproximado		0,100 kg	
Material da caixa		ABS	
Temperatura ambiente		0~50°C	
Umidade relativa do ar		83% (Sem condensação)	
Tempo para retorno		100 ms	
Consumo aproximado		3 VA	
Rejeição	Modo comum	>120 dB 60Hz	
ao ruído	Modo diferencial	>60 dB 60Hz	
Grau de	Caixa	IP 40	
proteção	Terminais	IP 20	
Tempo de reset	mseg	Mínimo 100	
lmáx. 250Vca	5A (carga resistiva)	5A (cosΨ=1, 21 cosΨ=0,6)	



Funções de temporização: retardo na energização, deserginização, e cíclico. Função RY: temporização para partida de motores estrela triângulo. Várias escalas de tempo através de dial

Saída a relé SPDT


DIMENSÕES (MM)



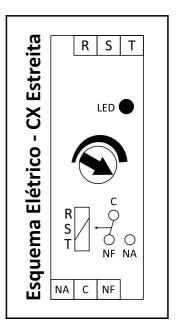
- Função E: Retardo na energização (LK-RTE):
- Função D: Retardo na desenergização (LK-RTD):
- Função C: Retardo na função cíclica (LK-RTC):

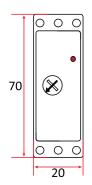
Proporciona um intervalo de tempo regulável entre a alimentação e a atuação dos contatos de saída.

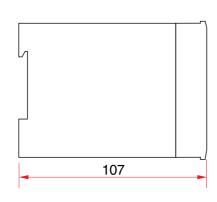
- Função Y: Retardo na função cíclica (RY):Com a alimentação, o relé estrela é instantaneamente acionado durante o tempo selecionado na escala, em seguida após um breve intervalo (50ms) o relé estrela triângulo é acionado permanentemente.

Relé de tempo - Estrela Triângulo

RELÉ FALTA DE FASE


Os relés falta de fase Lukma foram desenvolvidos para a supervisão de sistemas trifásicos, energizando ou desenergizado o relé de saída quando faltar uma das fases da rede de distribuição. Podem acionar alarmes, interromper circuitos de modo a proteger máquinas e equipamentos na falta de uma das fases.

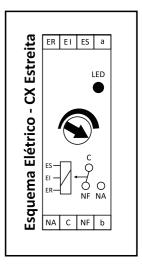

INFORMAÇÕES GERAIS

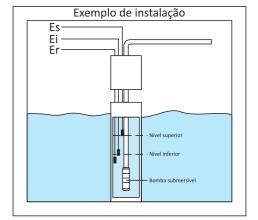

Monitoram a falta de fase com ou sem neutro (especificar)	
Possui LED indivcativo	
Temporização no ligamento (<1S)	
Temporização a detecção de falha (<3S)	
Montagem em fundo de painel com fixação pela base através de parafusos ou trilho DIN (5mm)	

Alimentação LK-RT (Vca)		220V, 380V ou 440V	
Consumo (VA)		3	
Frequência (Hz)		60Hz	
Grau de proteção		IP20 (Terminais) / IP51(invólucro)	
Retardo no desligamento (seg.)		<4	
Histerise (%)		±5	
Temperatura ambiente de operação (°C)		0~50°C	
Umidade relativa do ar		35 a 83% (Sem condensação)	
Isolação enter terminais e caixa (MΩ/Vcc)		50/500	
Materi	ial da caixa	ABS	
Imunio	dade ao distúrbio	IEC 801-4, nível II	
	Quantidade de saída	1SPDT (reversível)	
Cafala	lmáx. para 250Vca, cosφ=1(A)	5 (carga resistiva)	
Saída	Vida útil mecânica	10.000.000 operações	
	Tempo de com. dos contatos	20	
Borne	s	Parafusadas (2 fios x 2,5mm²)	

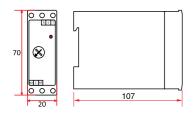
DIMENSÕES (MM)

RELÉ DE NÍVEL INFERIOR


O relé Lukma controlador eletrônico de nível para líquidos condutivos e não inflamáveis, energiza o relé de saída quando o nível máximo for atingido e desenergiza ao atingir o nível mínimo. Pode ser utilizado em controle de reservatórios ou proteção de bombas submersas protegendo uma bomba submersa que não pode funcionar sem água, por exemplo). Utiliza três elétrodos tipo pêndulo para controlar o nível circulando corrente alternada nos mesmos e minimizando o efeito de eletrólise e prologando a sua vida útil.


INFORMAÇÕES GERAIS

Controlam o nível de líquidos com ajuste $$ de sensibilidade até $100k\Omega$		
Caixa em ABS, protetor de terminais IP20		
Proteção contra transientes (opcional)		
Corrente alternada nos eletrodos		
Considerar distância entre elétrodos e o relé de até 1500M para		
modelos de longa distância		


Alimentação (Vca): ±10% Vca	110V, 220V, 380V, 440Vac	
	· · · · ·	
Frequência (Hz)	43~63	
Ajuste de sensibilidade	100ΚΩ	
Consumo aproximado (VA)	3,5	
Contato de saída	1 SPDT	
Contato de Salda	5 A@250Vca (cosφ=1) (carga resistiva)	
Material da caixa	ABS	
Temperatura ambiente (°C)	0 a +50	
Peso aprox. (Kg)	0,280	
Tensão no eletrodos (Vca)	14 a 24	
Imáx. entre eletrodos (mA)	1	
Grau de proteção	IP51 (caixa) e IP20 (terminais)	

DIMENSÕES (MM)

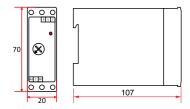
Ajuste da Sensibilidade: Conforme o líquido utilizado e a distância entre os eletrodos, haverá diferentes condutibilidades. Por isso, existe no frontal do relé um ajuste de sensibilidade, permitindo seu uso com diversos líquidos condutores e não inflamáveis.

- 1.Com os eletrodos instalados e submersos no líquido condutor e o relé energizado, gire o potenciômetro de ajuste todo a direita (sentido horário), o LED deverá apagar.
- 2. Gire vagarosamente para a esquerda no sentido anti-horário até o LED acender.
- 3.0 ponto ideal de sensibilidade (devido a condutibilidade do líquido) está definido.
- 4. Para conferir, desconecte o condutor do eletrodo "Er" do respectivo terminal, fazendo com que o LED apague.
- 5.Reconecte o condutor; o LED deverá acender novamente. Caso isso não ocorra, repita o ajuste.
- 6.Obs: Existe um retardo de até 3 segundos para a detecção dos eletrodos no contato com o líquido.
- 7.As normas de segurança recomendam que somente o contato NA seja utilizado para liberar o funcionamento de máquinas/ equipamentos (segurança intrínseca). Desta forma:
- LED aceso = relé energizado, LED apagado = relé desenergizado.

RELÉ DE NÍVEL SUPERIOR

O relé Lukma controlador eletrônico de nível para líquidos condutivos e não inflamáveis, energiza o relé de saída quando o nível mínimo for atingido e desenergiza ao atingir o nível máximo. Pode ser utilizado em controle de reservatórios ou proteção de bombas submersas protegendo uma bomba submersa que não pode funcionar sem água, por exemplo). Utiliza três elétrodos tipo pêndulo para controlar o nível circulando corrente alternada nos mesmos e minimizando o efeito de eletrólise e prologando a sua vida útil.

INFORMAÇÕES GERAIS


Controlam o nível de líquidos com ajuste de sensibilidade até 100kΩ		
Caixa em ABS, protetor de terminais IP20		
Proteção contra transientes (opcional)		
Corrente alternada nos eletrodos		
Considerar distância entre elétrodos e o relé de até 1500M para		
modelos de longa distância		

Alimentação (Vca): ±10% Vca	110V, 220V, 380V, 440Vac	
Frequência (Hz)	43~63	
Ajuste de sensibilidade	100ΚΩ	
Consumo aproximado (VA)	3,5	
Contata da caída	1 SPDT	
Contato de saída	5 A@250Vca (cosφ=1) (carga resistiva)	
Material da caixa	ABS	
Temperatura ambiente (°C)	0 a +50	
Peso aprox. (Kg)	0,280	
Tensão no eletrodos (Vca)	14 a 24	
lmáx. entre eletrodos (mA)	1	
Grau de proteção	IP51 (caixa) e IP20 (terminais)	

DIMENSÕES (MM)

Ajuste da Sensibilidade: Conforme o líquido utilizado e a distância entre os elétrodos, haverá diferentes condutibilidades. Por isso, existe no frontal do relé um ajuste de sensibilidade permitindo seu uso com diversos líquidos condutores e não inflamáveis.

1.Com os elétrodos instalados e submersos no líquido condutor e o relé energizado, gire o potenciômetro de ajuste todo a direita (sentido horário), o LED deverá acender

2. Gire vagarosamente para a esquerda no sentido anti-horário até o LED apagar. 3.0 ponto ideal de sensibilidade (devido a condutibilidade do líquido) está definido

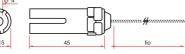
4. Para conferir, desconecte o condutor do eletrodo "Er" do respectivo terminal, fazendo com que o LED acenda.

5. Reconecte o condutor; o LED deverá apagar novamente. Caso isso não ocorra, repita o ajuste.

6.Obs: Existe um retardo de até 3 segundos para a detecção dos elétrodos no contato com o líquido.

7.As normas de segurança recomendam que somente o contato NA seja utilizado para liberar o funcionamento de

máquinas/ equipamentos (segurança intrínseca). Desta forma: LED aceso = relé energizado, LED apagado = relé desenergizado.


ACESSÓRIO - ELÉTRODO DE NÍVEL - TIPO PÊNDULO

Constituído de bastão metálico confeccionado em aço inox 303/304, o eletrodo é envolvido por uma carcaça ABS que permite isolação elétrica. Através do próprio fio ele permanece suspenso no reservatório como se fosse um pêndulo.

Recomensa-se que os mesmos sejam instalados dentro de um cano PVC totalmente perfurado, evitando que os eletrodos sofram deslocamento com a turbulência do líquido. Para evitar a oxidação a conexão deverá ser envolvida por um vedante.

Código	37026
Modelo	LK-ENP-1
Temperatura de trabalho	80°C

